
Adam Kostrzewa

You can also design and test your hardware

trojan!

Exploiting a CPU Backdoor for x86

Architecture

19th edition of CONFidence 2020

„You can also design and test your hardware trojan!” Adam Kostrzewa

The presented work disseminates the results of my spare time activities done solely using my own, private
resources. Therefore, the views and opinions expressed in this presentation are mine and mine only and do
not necessarily reflect the official policy or position of my employer. Examples presented within this work
are only for demonstration purposes and does not necessarily reflect real-world products.

Disclaimer:

„You can also design and test your hardware trojan!” Adam Kostrzewa

This presentation addresses the following questions:

▪ how difficult it is to introduce a hardware trojan or backdoor into a modern
electronic equipment?

▪ how attacker can exploit such threats and extract your data?
▪ what are the principles of work of such circuits?

If these are interesting for you,
or you have always wanted to start your adventure with hardware security,
or you would just refresh your knowledge with respect to HW threats
then this talk is for you!

Talk’s Questions

„You can also design and test your hardware trojan!” Adam Kostrzewa

Hot topic in media
▪ 5G network controversies
▪ Vulnerabilities in x86 processors (Meltdown and Spectre)
▪ In October 2018 Bloomberg reported that an hardware trojan could reach almost 30

U.S. companies, including Amazon and Apple
▪ Massive 20GB Intel IP data breach mentions backdoor (context still unclear!)
▪ and more…!

Also in research
▪ In 2018 Google Scholar reports 6680 results for “hardware trojan design”
▪ In 2019 we have 7160
▪ And until September 2020 these are 6050 already

Hardware Security - Motivation

„You can also design and test your hardware trojan!” Adam Kostrzewa

Still no direct evidence of such threat !
Which could be publicly analyzed and confirmed…

Why this threat is still valid?
▪ HW products are closed sourced and reverse is expensive
▪ Selected errors could be used as an attack vectors but still treated as bugs

So is it just conspiracy theory?
▪ no evidence of application in real-products
▪ but everyone can check if this threat is real and practically feasible!

No “smoking gun” evidence

„You can also design and test your hardware trojan!” Adam Kostrzewa

We can emulate running processor e.g. Qemu

“QEMU is a hosted virtual machine monitor: it emulates the machine's processor
through dynamic binary translation and provides a set of different hardware and device
models for the machine, enabling it to run a variety of guest operating systems.” source
Wikipedia

So let’s try to emulate the CPU with backdoor!
And write an exploit for an regular OS (Linux)!

If it runs in emulator than it shouldn’t be that difficult to implement it in HW!

Let’s Focus on a Practical Example

Goal of today's presentation!

„You can also design and test your hardware trojan!” Adam Kostrzewa

For proof of concept implementation, I will use:
▪ popular emulator and OS, both should be open source
▪ commonly known ISA, e.g. x86
▪ so everyone may repeat the experiments

Therefore, I selected:
▪ Qemu version 3.0.50 (easily applicable to all versions)
▪ Buildroot 2018.02.1 with a regular Linux Kernel ver. 4.15

Modifications are available on my github : https://github.com/AdamKostrzewa

Main Idea: If we can emulate regular x86 processor
we may also emulate one with a backdoor!

https://github.com/AdamKostrzewa

„You can also design and test your hardware trojan!” Adam Kostrzewa

Talk‘s Outline

1. Motivation
2. Revision of Security Mechanisms in Modern Processors

❑ ring protection (kernel mode, user mode)
❑ and memory managment

3. Design of a CPU Backdoor
4. Proof-of-concept implementation

❑ using Qemu x86 CPU emulator
5. Exploit of the threat to leverage the OS protection mechanisms

❑ for modern Linux kernel
6. Live demo
7. Summary

„You can also design and test your hardware trojan!” Adam Kostrzewa

is based on the assumption that the processor is operating according to a strict
specification and a known set of predefined rules.

Commonly applied: hierarchical protection domains (protection rings) -
introduced already in 70thies for MULTICS.
▪ at least two modes of operation (hypervisor and user)
▪ in hypervisor mode kernel has access to all commands

and the whole address space
▪ in user mode only a subset of commands is available
▪ transition can happen only according to a predefined set of rules (e.g. syscalls and

interupts)

OS Security

„You can also design and test your hardware trojan!” Adam Kostrzewa

Processor defines four different privilege rings
▪ they are numbered from 0 (most privileged) to 3 (least privileged)
▪ kernel code runs in ring 0
▪ user code runs in ring 3
▪ two intermediate levels (ring1 and 2)

are usually not used,
except for virtualization

x86 CPU Ring Protection, part 1

Protection Rings

Ring 3

Ring 2
Ring 1

Ring 0

„You can also design and test your hardware trojan!” Adam Kostrzewa

CPL (Current Privilege Level) defines the rights of the currently executed
code
▪ register in the processor
▪ restriction who and when can change it

What are main resources which are protected?
▪ memory
▪ peripherals
▪ and the ability to execute certain machine instructions

(only few in x86)

x86 CPU Ring Protection, part 2

„You can also design and test your hardware trojan!” Adam Kostrzewa

Memory Management in x86

Assembly

Instructions

Segmentation

Unit

Paging

Unit

RAM

Modules

Logical

Address

Linear

Address
Physical

Address

„You can also design and test your hardware trojan!” Adam Kostrzewa

Segmentation in Real Mode (16-bit) in x86 (simplified)

Assembly

Instructions

JMP 0x7013

Code Segment
CS register 0x1000

Memory Address
offset 0x7013

Segment Selector * 16

+ offset

Linear / Physical

Address

Segment registers:

▪ CS, DS, SS, ES, FS, GS segments

„You can also design and test your hardware trojan!” Adam Kostrzewa

Segmentation in Protected Mode x86 (simplified)

Assembly

Instructions

JMP 0x7013

CS register 0x73

Memory Address
offset 0x7013

base address

+ offset

Linear Address

▪ segment selector is no longer a raw number
▪ it contains an index into a table of segment descriptors
▪ segment descriptor defines the base address
▪ which is used for calculation

GDT

Global Descriptor Table

Segment Descriptor

Segment Descriptor

Segment Descriptor

Base Address

Index CPL0

„You can also design and test your hardware trojan!” Adam Kostrzewa

Segmentation in Protected Mode in x86

CPL

RPL

DPL

Current code

segment register

Data segment selector

(to be loaded)

Segment descriptor

MAX(CPL, RPL) <= DPL

True

Load Segment!

False

Protection Exception

„You can also design and test your hardware trojan!” Adam Kostrzewa

The transition is usually caused by one of the following:
▪ Fault (e.g. a page fault or some other exception caused by executing an instruction)
▪ Interrupt (e.g. a keyboard interrupt or I/O finishing)
▪ Trap (e.g. a system call)

How to switch modes? (current CPL)

Running process

OS Kernel

Process Execution Interrupt

Execute the code

from the interrupt

cf. Interrupt

Descriptor Table

Process Execution

Trap Interrupt

(change CPL in HW)

Return &

Change CPL in HW
Kernel

Mode

User

Mode

„You can also design and test your hardware trojan!” Adam Kostrzewa

Talk‘s Outline

1. Motivation
2. Revision of Security Mechanisms in Modern Processors
3. Design of a CPU Backdoor
4. Proof-of-concept implementation

❑ using Qemu x86 CPU emulator
5. Exploit of the threat to leverage the OS protection mechanisms

❑ for modern Linux kernel
6. Live demo
7. Summary

„You can also design and test your hardware trojan!” Adam Kostrzewa

Increase privileges of currently running process
▪ from regular user to root → classic approach
▪ later, attacker can do whatever he wants
▪ extract, modify data etc. including logs

How to do it?
▪ Find place in memory where the information about the current process is

stored
▪ Modify the data so that the process gets UID and GID 0
▪ Current process will run as root!

Attack Goals & Design

„You can also design and test your hardware trojan!” Adam Kostrzewa

Challenge
▪ This can be done only in the kernel mode of the system

Solution
▪ Backdoor in CPU should switch the modes
▪ Malicious activities in software e.g. overriding the privileges of currently

running process
▪ Hardware-Software Approach!

Attack Challenge

„You can also design and test your hardware trojan!” Adam Kostrzewa

Definition: function of a hardware component, hidden from the user,
which can add, remove or modify the functionality of a hardware
component and, therefore, reduce its reliability or create a potential threat

Constructed from:
payload – modification
of a circuit
trigger – signal activating
the payload
(combinational or sequential)

How hardware trojans/backdoors work?

Signal S

Not S

T
ri
g
g
e
r

Payload

„You can also design and test your hardware trojan!” Adam Kostrzewa

Payload
▪ change the status of the CPL
▪ and switch to the kernel mode (CPL 0)

Trigger
▪ selected ASM command available in the user mode
▪ but assure that combination is not easy to detect
▪ e.g. enforce that activation happens only in certain

processor state

HW/SW co-design (trigger in SW, payload in HW)

CPU Backdoor Design

„You can also design and test your hardware trojan!” Adam Kostrzewa

▪ Simplest trigger use some known or hidden instruction
▪ for instance SALC instruction (after Loıc Duflot, ESORICS 2008)
▪ set AL depending on the value of the Carry Flag
▪ available beginning with 8086, but only documented since Pentium

Pro

▪ maybe with some other additional conditions (optional)
▪ specific values of the registers
▪ and than conditional statement

Simple Trigger

„You can also design and test your hardware trojan!” Adam Kostrzewa

Qemu x86 Emulation
Assembler Interpreter
\qemu\target\
i386\translate.c

„You can also design and test your hardware trojan!” Adam Kostrzewa

CPU Backdoor Implementation in Qemu

„You can also design and test your hardware trojan!” Adam Kostrzewa

What about speculative execution, branch prediction?

▪ If (a) then, if (b) than
▪ we compute if and else simultaneously
▪ and later discard one of them (rollback)
▪ the one which actually triggered the backdoor??

Or other bugs? (cf. Spectre & Meltdown)
Combination should be rare in order to make it hard to find!
(or easy to explain that it is a bug)

More Sophisticated Triggers

„You can also design and test your hardware trojan!” Adam Kostrzewa

Software Exploit for Linux

▪ place the CPU in the desired state (optional)
▪ run the trigger - “salc” instruction
▪ inject code and run it in ring 0
▪ get back to ring 3 in order to leave the system in a stable state
▪ when code is running in ring 0, systems calls do not work
▪ consequently a random system call may crash it

But where are Kernel CS and DS in GDT?
That depends on your distro!

„You can also design and test your hardware trojan!” Adam Kostrzewa

linux/source
/arch/x86/
include/asm/
segment.h

12 * 8 = 96

so 0x60 in hex

13*8 = 104

So 0x68 in hex

„You can also design and test your hardware trojan!” Adam Kostrzewa

Software Exploit for Linux, Part 1

__KERNEL_DS

__KERNEL_CS

„You can also design and test your hardware trojan!” Adam Kostrzewa

Software Exploit for Linux, Part 2

▪ get uid and gid for our current user
(id –u username, 1000 in our case)

▪ go with a pointer p through whole
kernel stack (base to top) trying to find a place in
memory where the current process information
(probably) is stored (second attempt in our case)

▪ when we finds a piece of memory holding multiple
copies of the current UID and GID

▪ we modifies it so that the current process gets UID and
GID 0

▪ we have root!

„You can also design and test your hardware trojan!” Adam Kostrzewa

Where is KSTACK base and top?
From Documentation ! (/Documentation/vm/highmem.txt)

May
be set
differently!

„You can also design and test your hardware trojan!” Adam Kostrzewa

Talk‘s Outline

1. Motivation
2. Revision of Security Mechanisms in Modern Processors
3. Design of a CPU Backdoor
4. Proof-of-concept implementation

❑ using Qemu x86 CPU emulator
5. Exploit of the threat to leverage the OS protection mechanisms

❑ for modern Linux kernel
6. Live demo
7. Summary

„You can also design and test your hardware trojan!” Adam Kostrzewa

Similar to the usage of any other “software” kernel exploit!

Instead finding a vulnerability in an interrupt handler / syscall routine etc.
we place the processor in the selected state and run CPU Backdoor

Everything what happens next:
data extraction, modification etc. same as in case of any other exploit!

Cheaper and faster for the attacker!
(kernel security is better and better → low number of new exploits)

Usage of the CPU Backdoor

„You can also design and test your hardware trojan!” Adam Kostrzewa

Once implemented it is hard to change or modify a HW component
Thus, electronic circuits require extensive testing during the design phase

Selected errors could be used as an attack vectors e.g.
• service interfaces in routers e.g. JTAG for rogue access points
• interesting in this context Intel Bugs: Meltdown and Spectre

Convenient excuse for the manufacturer
Otherwise high costs and severe consequences!

Error or Backdoor? Or both?

„You can also design and test your hardware trojan!” Adam Kostrzewa

▪ HW threats are technically possible!
Repeat my and conduct your own experiments !

▪ HW threats are not that difficult to implement
▪ And you cant offer software protection against them
▪ Therefore discussion about HW safety is highly relevant
▪ Especially in the context of safety critical infrastructure

What to do?
▪ Build skilled force in HW domain (personnel and tools)
▪ Evaluate HW products, will make attacker’s life more difficult
▪ Heterogenous environments

Summary

